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Abstract

Goodstein’s Theorem claims that every Goodstein Sequence converges to 0, de-

spite each such sequence seemingly growing very large, very quickly – suggesting

that perhaps they behave quite opposite to the claim of Goodstein’s Theorem. The

theorem is interesting in its own right, and can be proven using arithmetic of trans-

finite ordinals. What is more interesting though is that it must be proven using

arithmetic of transfinite ordinals – as Goodstein’s Theorem is (and can be proven

to be) undecidable in Peano Arithmetic if Peano Arithmetic is consistent. This re-

sult thus extends to a purely number theoretic testament to Gödel’s Incompleteness

Theorems, proving the incompleteness of Peano Arithmetic.

Supervised by Dr David Asperó
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Introduction

The late nineteenth century and early twentieth century saw an increasing interest in

the axiomatisation of arithmetic by mathematicians, and in 1889, Italian mathematician

Giuseppe Peano (1858-1932) published Arithmetices principia nova methodo exposita

– translating from Latin as The principles of arithmetic presented by a new method.

Within, Peano stated his now famous first-order axioms of number theory (Peano Arith-

metic), which axiomatise the theory of arithmetic over the natural numbers. As such,

Peano is widely regarded as the founder of symbolic logic, and modernised variants of his

axioms of arithmetic are still commonly referred to today – in the twenty-first century.

Almost half a century after Peano’s axiomatisation of arithmetic, Austro-Hungarian

mathematician Kurt Gödel (1906-1978) published his Incompleteness Theorems, which

are hugely influential and key to our present understanding of symbolic logic and math-

ematical theories. Whilst Gödel’s Incompleteness Theorems were largely influential, the

examples presented alongside them were metamathematical; thus, Barwise (1977) notes

that ever since Kurt Gödel published his Incompleteness Theorems in 1931, many sought

to find a purely mathematical application of the theorems.

Thirteen years after Gödel’s theorems were published, English mathematician Reuben

Goodstein (1912-1985) introduced concepts now known as Goodstein Sequences and

Goodstein’s Theorem in The Journal of Symbolic Logic (Goodstein, 1944). Goodstein’s

Theorem is a statement about natural numbers which claims that for all a ∈ N, the
Goodstein Sequence (Gi(a))i∈N terminates – meaning that it converges to 0 after a finite

number of steps. Goodstein’s Theorem is interesting in its own right, as it provides a

surprising and unexpected result about the sequences (which seemingly grow extremely

fast for most values of a ∈ N); however, what is more interesting is that Goodstein’s

Theorem can actually be proven to be independent of (undecidable in) Peano Arithmetic,

if Peano Arithmetic is consistent.

The implications of the undecidability/unprovability of Goodstein’s Theorem in Peano

Arithmetic bear huge significance in the field of symbolic logic and our understanding

of incompleteness. Goodstein’s Theorem acts precisely as a vehicle for proving the

incompleteness of Peano Arithmetic, giving the first ever number theoretic example of

Gödel’s First Incompleteness Theorem, by appeal to Gödel’s Second Incompleteness

Theorem (Miller, 2001).

Both Goodstein’s Theorem and its unprovability in Peano Arithmetic have a number

of consequences. Whilst they most prominently give us a better understanding of the
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incompleteness of Peano Arithmetic, they also inspire research interests in a number

of other areas of mathematics. For example, the nature of Goodstein Sequences grow-

ing very large, very fast cultivates interest in its own right, and makes for interesting

consideration within other areas of mathematics – including as a dynamical system.

In this report, we shall first introduce Goodstein Sequences and Goodstein’s Theorem

(Part I) through summary of Goodstein’s original work (Goodstein, 1944), and construct

a proof of Goodstein’s Theorem using ordinal arithmetic in Part II. In Section 5, we will

then develop the foundations to begin to understand what it means for something to

be unprovable in a given system of axioms. We shall introduce many logical concepts,

and then use these as a basis to give a detailed analysis of precisely why Goodstein’s

Theorem is unprovable in Peano Arithmetic in Section 6. With this, we shall consider

the implications and consequences of its unprovability in Peano Arithmetic, including

its relevance to Gödel’s Incompleteness Theorems and the idea of truth in arithmetic,

in Section 7.
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Part I

Goodstein’s Theorem

“Cut off one head, two more shall take its place.”

- Johann Schmidt, Captain America: The First Avenger.

1 Goodstein Sequences

Goodstein Sequences are sequences of natural numbers, which seemingly grow at an

incredible rate; so much so that their behaviour has been compared with that of a hydra

– as shall be discussed in subsection 2.2. Despite each step of the sequence involving

subtracting 1 from the previous value, most Goodstein Sequences still appear to grow

exponentially at every step. However, we shall see that there is more to Goodstein

Sequences than what one may expect, and – similarly – there is more to the behaviour

of a hydra too, as an equivalent construction of Goodstein Sequences.

1.1 Hereditary Base-b Notation

The key concept used in Goodstein Sequences is the idea of hereditary base-b notation of

natural numbers, whereby a number a ∈ N is expressed as the sum of powers of b ∈ N,
and all exponents also expressed as the sum of powers of b recursively. To understand

hereditary base-b notation, we first introduce the conversion of standard base-10 natural

numbers to alternate bases.

Definition 1.1. Let n ∈ Z be an integer. To convert n to base b, we compute

d0, d1, . . . , dk ∈ N, with 0 ≤ di < b for every di, such that

n = ±(dkbk + dk−1b
k−1 + · · ·+ d1b+ d0).

Remark 1.2 (A method for writing n in base b).

1. First, compute k such that bk ≤ n < bk+1.

2. Next, write n = dkb
k + rk – with dk, rk ∈ N, where dk is maximal, and rk is the

remainder when n is divided by bk. By construction, we have 0 ≤ dk < b.

3. If b ≤ r, return to step 1 to write rk in base-b notation (using n = rk). Otherwise,

if rk < b, proceed to step 4.
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4. We now have expressions in the form a = qb + r, for a = n, and a = rk for all

applicable k. We can then obtain an expression for n in base-b by substituting our

expressions for rk into our expression for n recursively, until we reach an expression

equal to n, with r < b.

Using this definition and method, we now present some examples:

Example 1.3. Writing 81 in base-3 notation, we have:

34 = 81 ≤ 81 < 243 = 35,

so 81 = q · 34 + r, where q = 1 and r = 0. So, in base-3 notation, we have

81 = 34.

Example 1.4. Writing 2021 in base-2 notation, we have:

210 = 1024 ≤ 2021 < 2048 = 211.

So we write 2021 = q · 210 + r. In this case, we have q = 1, and r = 997. That is:

2021 = 210 + 997. (1.1)

We now convert r = 997 into base-2 notation, by finding k such that bk ≤ 997 < bk+1.

k = 9 satisfies this, so we write 997 = q · 29 + r, where q = 1, and r = 485.

Having obtained that 997 = 29 + 485, we can substitute this into equation 1.1 to derive

2021 = 210 + 29 + 485,

and repeat the process again for r = 485 to obtain

2021 = 210 + 29 + 28 + 229,

and again for r = 229. We continue this for each subsequent value for r obtained by

repeatedly performing the algorithm, until a value of r is found which satisfies r < b.

This eventually arrives at the following base-2 notation way of writing 2021:

2021 = 210 + 29 + 28 + 27 + 26 + 25 + 22 + 1.

We now extend the concept of base-b notation to hereditary base-b notation; the key

element from which Goodstein Sequences are constructed.
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Definition 1.5. Let n ∈ N be a natural number. To write n in hereditary base-b

notation, we first write n in base-b notation (as in Definition 1.1), and then write all

exponents in base-b – and recursively, all exponents of exponents – until the expression

is formed solely of integers less than or equal to b.

Example 1.6 (Extending from Example 1.3). Writing 81 in base-3 notation, we have:

81 = 34

So converting this to hereditary base-3 notation, this is:

81 = 33+1

Example 1.7 (Extending from Example 1.4). Writing 2021 in base-2 notation, we have:

2021 = 210 + 29 + 28 + 27 + 26 + 25 + 22 + 1.

Converting this to hereditary base-2 notation, we write all of the powers (and subse-

quently, powers of powers) in base 2 notation until our expression for 2021 is made

entirely of integers less than or equal to 2 – as such:

2021 = 22
2+1+2 + 22

2+1+1 + 22
2+1

+ 22
2+2+1 + 22

2+2 + 22
2+1 + 22 + 1.

1.2 Goodstein Sequences

In his 1944 article, On the Restricted Ordinal Theorem (Goodstein, 1944), Reuben Good-

stein defined sequences of natural numbers which became widely known as Goodstein

Sequences. These sequences rely on first writing a natural number a ∈ N in hereditary

base-b notation before performing two actions to the hereditary base-b representation of

a, to obtain the succeeding entry of the sequence. The following definition details how

a Goodstein Sequence is obtained for any natural number a.

Definition 1.8. The Goodstein Sequence for a natural number a ∈ N is a sequence

(Gi(a))i∈N of natural numbers, defined as such:

• The first term of the Goodstein Sequence G1(a) = a.

• Each subsequent ith term Gi(a) is computed as such:

1. WriteGi−1(a) in hereditary base-i notation (as in Definition 1.5).
(

h base-i−−−−−→
)

2. Substitute each i with i+ 1.
(

i 7→ i+1−−−−−→
)

3. Subtract 1 from the result.
(

cut−−→
)
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We now see some examples of the construction of Goodstein Sequences:

Example 1.9. To find the second term of the Goodstein Sequence for a ∈ N, we must:

1. Write G1(a) = a in hereditary base-2 notation.
(

h base-2−−−−−−→
)

2. Substitute each 2 with a 3.
(

2 7→ 3−−−−→
)

3. Subtract 1 from the result.
(

cut−−→
)

Example 1.10. The Goodstein Sequence for a = 2, (Gi(2))i∈N, is as follows:

G1(2) = 2.

G2(2) = 2
h base-2−−−−−−→ 2

2 7→ 3−−−−→ 3
cut−−→ 3− 1 = 2.

G3(2) = 2
h base-3−−−−−−→ 2

3 7→ 4−−−−→ 2
cut−−→ 2− 1 = 1.

G4(2) = 1
h base-4−−−−−−→ 1

4 7→ 5−−−−→ 1
cut−−→ 1− 1 = 0.

G5(2) = 0
h base-5−−−−−−→ 0

5 7→ 6−−−−→ 0
cut−−→ 0− 1 = −1 /∈ N.

...
...

We see that the fifth term of the Goodstein Sequence for a = 2 is G5(2) = −1, but
Goodstein Sequences are sequences of natural numbers, and −1 /∈ N. Thus, we say that

the Goodstein Sequence (Gi(2))i∈N terminates at the fourth term of the sequence. In

fact, we can see that any Goodstein Sequence will terminate at the first term equal to

0, due to the following proposition.

Proposition 1.11. The Goodstein Sequence for a ∈ N terminates at the ith term if and

only if Gi(a) = 0.

Proof. We begin by proving the backwards direction. That is, Gi(a) = 0 implies that

the sequence terminates at Gi(a).

(←) Suppose Gi(a) = 0. By Definition 1.8, to obtain Gi+1(a), we must write Gi(a) = 0

in hereditary base-(i+1) notation, then substitute each i+1 for i+2, and subtract

1 from the result. For any b ∈ N, we have that 0 is equal to 0 in base b, and so

the hereditary base-(i + 1) notation for 0 is 0. There are no occurrences of i + 1

in 0, so there is nothing to replace with i+ 2, and finally we subtract 1 from our

0. Thus, Gi+1(a) = −1, which is not a natural number and hence is not part of

the sequence. So the sequence must terminate at Gi(n), the i
th term.

(→) Conversely, suppose the sequence terminates at Gi(a). Then, if we computed what

would be the (i+1)th term, we would have Gi+1(a) /∈ N, so Gi+1(a) < 0. We have
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two cases:

1. Gi+1(a) = −1: in this case, to get back to Gi(a), we must perform the inverse

operations specified in Definition 1.8 in reverse order to Gi+1(a). That is,

Gi+1 + 1 = 0 (add 1)

= 0 (substitute each i+ 2 with i+ 1)

= 0 (evaluate the expression as a natural number)

So Gi(a) = 0, as required.

2. Gi+1(a) < −1: by performing the same inverse operations as in case 1, we

see that Gi(a) must also be negative, thus meaning that Gi(a) is also not a

natural number and thus not part of the Goodstein Sequence – which is a

contradiction, meaning that this case is not possible.

Corollary 1.12. For every a ∈ N, the Goodstein Sequence (Gi(a))i∈N terminates at

the kth term, where k ∈ N is the minimum natural number such that Gk(a) = 0.

Definition 1.13. We define the Goodstein Function G(a) as the length of the Goodstein

Sequence (Gi(a))i∈N for a ∈ N. That is, G(a) = k, where Gk(a) = 0.

Example 1.14. We saw in Example 1.10 that (Gi(2))i∈N terminates at the fourth term,

so it has length 4. Thus,

G(2) = 4.

We now see another example of a Goodstein Sequence, but for a larger value of a:

Example 1.15. The Goodstein Sequence for a = 5 begins as follows:

G1(5) = 5.

G2(5) = 5
h base-2−−−−−−→ 22 + 1

2 7→ 3−−−−→ 33 + 1
cut−−→ 33 = 27.

G3(5) = 27
h base-3−−−−−−→ 33

3 7→ 4−−−−→ 44
cut−−→ 44 − 1 = 256− 1 = 255.

G4(5) = 255
h base-4−−−−−−→ 3 · 43 + 3 · 42 + 3 · 4 + 3

4 7→ 5−−−−→ 3 · 53 + 3 · 52 + 3 · 5 + 3

cut−−→ 468− 1 = 467.

G5(5) = 467
h base-5−−−−−−→ 3 · 53 + 3 · 52 + 3 · 5 + 2

5 7→ 6−−−−→ 3 · 63 + 3 · 62 + 3 · 6 + 2

cut−−→ 776− 1 = 775.

...
...
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As we saw in Example 1.10 (and 1.14), G(2) = 4, as the 4th term of the sequence is 0. In

Example 1.15, we see that the sequence seems to grow very quickly, and – if the sequence

does terminate – it does not appear to happen for a low value of i. In fact, for larger

values of a, the sequence (Gi(a))i∈N seemingly gets much larger, much quicker. From

this observation, it may seem an absurd suggestion that all Goodstein Sequences, even

those for large a, eventually become decreasing sequences. Even more absurd would be

the suggestion that every Goodstein Sequence terminates after a finite number of terms.

However, it is precisely this which Goodstein’s Theorem says – which we shall now see.
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2 Goodstein’s Theorem

2.1 Statement of the Theorem

From the examples given in subsection 1.2, one may hypothesise that perhaps there

exists some natural number n such that the Goodstein Sequence for any m ∈ N greater

than n diverges to infinity. This seems like a sensible hypothesis, as we have seen an

example of a small a ∈ N such that the sequence decreases, and we have seen a larger

value for a ∈ N whose Goodstein Sequence increases very quickly.

Contrarily though, Goodstein’s Theorem – stated and proven by Goodstein (1944) –

states a perhaps unexpected result, which is much the opposite to the prediction above.

Theorem 2.1 (Goodstein’s Theorem). For every a ∈ N, the Goodstein Sequence

(Gi(a))i∈N for a is finite in length. That is, there exists some k ∈ N such that Gk(a) = 0,

meaning that – by Proposition 1.11 – the Goodstein Sequence for a terminates at the

kth term, and G(a) = k.

In fact, many mathematicians have discovered and proven relations which allow us to

calculate the value of G(a) based on the value of a. The earliest of these discoveries is

that of Kirby and Paris (1982), which recognises that G has a growth-rate similar to

that of the Hardy hierarchy Hε0 .
1

Table 1 gives the value for i such that Gi(a) = 0 – that is, the length of the Goodstein

sequence for a ∈ N.

a G(a)
1 2

2 4

3 6

4 3 · 2402653211 − 2

5 > 1010
1019728

...
...

Table 1: The lengths of the Goodstein Sequences for a up to 5.

1These were introduced by Hardy (1904), and occur in computability theory. We shall not discuss

these further in this paper.
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2.2 An Equivalent Construction (Hydra Game)

In 1982, Kirby and Paris (1982) presented Hydra Game, which is observed as an equiv-

alent construction to Goodstein Sequences, with an accompanying theorem, equivalent

to Goodstein’s Theorem but in the context of Hydra Game.

Definition 2.2. A Hydra is a finite tree, composed of a finite number of straight edges,

each joining two vertices, such that every vertex is connected by a unique path to a

“root” node at the bottom of the tree.

Root

(a) An example of a Hydra, as defined by

Kirby and Paris (1982).

(b) An illustration of the mythical creature

Hydra. Source: Deposit Photos.

Figure 1: Graphical representations of Hydras.

We see in Figure 1 that mathematical tree concept of a Hydra bears resemblance to the

Hydra from Greek mythology – hence its name. In fact, Kirby and Paris (1982) presents

the Hydra fully analogically to Greek myth of Hercules slaying the Hydra.

Kirby and Paris (1982) defines the head of the Hydra to be a top node together the

single edge joined to it (analogous to the head and neck of the mythical Hydra), and all

other intermediate edges and vertices are called “segments” and “nodes” respectively.

At stage i ∈ N in a battle between Hercules and the Hydra, Hercules cuts off one head

from the Hydra, and the Hydra grows i new heads according to rules given by Kirby

and Paris (1982):

“From the node that used to be attached to the head which was just chopped off,

traverse one segment towards the root until the next node is reached. From this

node sprout n replicas of that part of the hydra (after decapitation) which is ‘above’

the segment just traversed, i.e., those nodes and segments from which, in order to

reach the root, this segment would have to be traversed. If the head just chopped

off had the root as one of its nodes, no new head is grown.”
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Example 2.3. If we begin with the Hydra from Figure 1a, and cut the segment (neck)

marked below in red, then the rule quoted above from Kirby and Paris (1982) gives the

new Hydra to the right as a result:

Root

A starting Hydra, with the head we will be

cutting off at stage 1 marked in red.

Root

The same Hydra, but after after the head

marked in red has been cut off.

We can see that the sub-Hydra2, coloured blue, from the parent node of the node from

which a head has been severed, is duplicated once, stemming from the same node (the

duplication is marked in orange). Now, at stage 2, we shall cut off another head – again

marked in red below.

Root

The Hydra after stage 1, with the head we

will chop off at stage 2 marked in red.

Root

The same Hydra, but after stage 2 – where

the head marked in red has been cut off.

After the second decapitation (stage 2), we see that a similar duplication to above occurs,

except we have duplicated the sub-Hydra marked in blue two times, instead of once –

to reflect this being stage two of the battle.

At any arbitrary stage i, the process is exactly the same: we decapitate one head, and

then duplicate the sub-Hydra stemming from the parent node of the node from which

the head has been severed i times.

It is easy to see from this example that the number of heads on the Hydra has potential

to grow very quickly at each stage, and thus one may recognise that this seems very

similar to a Goodstein Sequence in that, at each stage, the sequence grows by an amount

determined by the term number i ∈ N, and we subtract one.

2We shall define a sub-Hydra as a section of a Hydra which forms a smaller Hydra in its own right.
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A result follows, which says that Hercules can win the battle after a finite number of

decapitations – meaning that despite the number of heads on the Hydra increasing at a

seemingly colossal rate, eventually – after some finite number of steps – the number of

heads will reduce to zero and the Hydra will die (analogous to the Goodstein Sequence

terminating). In fact, what is more is that Hercules will always win the battle, regardless

of the strategy he adopts in choosing heads to chop off. This is precisely the theorem

given by Kirby and Paris (1982), which can be recognised as analogous to Goodstein’s

Theorem:

Theorem 2.4. Every strategy is a winning strategy.

With it being analogous to Goodstein’s Theorem, it also possesses the same characteris-

tics as Goodstein’s Theorem. That is, it is proven by the same method (as that given in

Section 4), and – more significantly – it is also unprovable in Peano Arithmetic. Again,

this can be proven in the same way by which we shall show that Goodstein’s Theorem

is unprovable by Peano’s axioms of arithmetic, in Section 6.
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Part II

A Proof of Goodstein’s Theorem

“A set is a Many that allows itself to be thought of as One.”

- Georg Cantor, as quoted in Platonism and Forms of Intelligence.3

Whilst the setup for Goodstein Sequences and Goodstein’s Theorem is fairly simple, the

proof is much more complex and relies on several concepts from Set Theory, such as

ordinal arithmetic and transfinite induction. We shall thus see an introduction to these

concepts, which will lead to a proof of Goodstein’s Theorem in Section 4.

3 An Introduction to Ordinal Arithmetic

In order to construct a proof of Goodstein’s Theorem, we must first develop the idea of

transfinite ordinals such to construct a parallel sequence to a given Goodstein Sequence –

from which we can deduce a proof of Goodstein’s Theorem. We begin by considering the

axioms of Set Theory, as given in the early twentieth century by German mathematicians

Ernst Zermelo and Abraham Fraenkel, which will allow us to define ordinal numbers.

3.1 The Zermelo-Fraenkel Axioms for Set Theory

As noted by O’Connor and Robertson (2014), Ernst Zermelo gave the first axiomati-

sation of Set Theory in 1908. However, in 1921, Abraham Fraenkel noted that for an

infinite set Z0, the existence of the set {Z0,P(Z0),P(P(Z0)), . . . } could not be proved

using Zermelo’s original axioms (Ebbinghaus and Peckhaus, 2015). As a result, there

followed a proposal of an amended set of axioms which were published by Fraenkel in

1922 (Ebbinghaus and Peckhaus, 2015), and Fraenkel’s amended set of axioms, the ZF

(Zermelo-Fraenkel) axioms, became widely accepted within the mathematical commu-

nity, and are still the most commonly used today (Roitman, 1990).

Definition 3.1 (The Axioms of ZF Set Theory, as stated by Jech, 2003).

1. Axiom of Extensionality: If X and Y have the same elements, then X = Y .

2. Axiom of Pairing: For any a, b, there exists a set {a, b} that contains exactly a
and b.

3Dillon and Zovko (2012).
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3. Axiom Schema of Separation: If P is a property with parameter p, then for

any X and p, there exists a set Y = {u ∈ X : P (u, p)} which contains those u ∈ X
which have property P .

4. Axiom of Union: For any X, there exists a set Y =
⋃
X, the union of all

elements in X.

5. Axiom of Power Set: For any X, there exists a set Y = P(X), the set of all

subsets of X.

6. Axiom of Infinity: There exists an infinite set.

7. Axiom Schema of Replacement: If a class F is a function, then for any X,

there exists a set Y = F (X) = {F (x) : x ∈ X}.

8. Axiom of Regularity: Every non-empty set has a ∃-minimal element4.

Commonly appended to the axioms of ZF is the axiom of choice:

9. Axiom of Choice: Every family of nonempty sets has a choice function.

The appending of the axiom of choice (AC for short) to the ZF axioms yields the

axiomatic Set Theory ZFC.

Whilst we shall not discuss the axioms of ZF or ZFC in-depth, an understanding of

them is important as our proof of Goodstein’s Theorem using arithmetic of ordinals is

built upon the axioms of ZFC.

3.2 Ordinals

We shall now see an introduction to ordinal numbers5, whose definition and arithmetic

are largely owed to the work of Georg Cantor: a German mathematician, widely regarded

as the founding-father of Set Theory (Levy, 1979). We begin by defining a linear order

on a set S.

Definition 3.2. A binary relation R on a set S is a linear ordering of S if:

• ¬(xRx) for all x ∈ S (x is not related to itself by R);

• If xRy and yRz, then xRz, for any x, y, z ∈ S (The relation R is transitive);

• Exactly one of the following holds for every x, y ∈ S:

1. xRy; 2. yRx, or; 3. x = y.

4An element x ∈ X is ∃-minimal if and only if there is no y ∈ X such that y ∈ x.
5Largely based on chapters 2 and 4 of Levy (1979), and chapter 2 of Jech (2003).
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Example 3.3. An example of a linear ordering is the binary relation < on the set R,
as given any three elements x, y, z ∈ R, we have x ̸< x as x = x, if x < y and y < z it

follows that x < z, and also, for x, y ∈ R, either x < y, y < x, or x = y.

We shall also define the notions or well-ordering and transitivity in order to define an

ordinal.

Definition 3.4. A linear ordering R on a set S is a well-ordering if in every non-empty

subset X ⊆ S, there is an R-minimal element x ∈ X. That is, an element x ∈ X such

that there is no other element y ∈ X with yRx.

Definition 3.5. A set S is transitive if and only if X ⊆ S for every X ∈ S. That is,

S is transitive ⇐⇒ (Y ∈ X,X ∈ S → Y ∈ S).

Example 3.6. If we consider the set S = {∅, {∅}, {∅, {∅}}}, we have the elements ∅,
{∅}, and {∅, {∅}}. Let us label these elements as such:

• ∅ = 0;

• {∅} = 1;

• {∅, {∅}} = 2.

Then we can see that 0 ∈ S is a subset of S trivially; 1 ∈ S is a subset of S, by taking

1 = {0} ⊆ S; and 2 ∈ S is a subset of S by taking 2 = {0, 1} ⊆ S. Hence, we have that

S is a transitive set.

The idea of defining ordinal numbers is to develop a way of representing elements of the

linearly-ordered set N of natural numbers as sets, such that any two elements α, β of N
satisfy the linear-order α < β if and only if α ∈ β as ordinals.

Definition 3.7. A set is an ordinal (or ordinal number) if it is well-ordered by ∈, and
it is transitive.

We shall next define a successor function for ordinal numbers, which will allow us to

obtain ordinals recursively from other ordinals. Thus, given one ordinal, we may define

countably infinitely many more, by repeatedly taking the successor function. With

this, we can begin to build a definition for each natural number using ordinals, and

subsequently we shall later see that we can derive an ordinal which represents the entire

set of natural numbers.

Definition 3.8. If α is an ordinal, then the successor ordinal α + 1 is defined by the

successor function S(α) = α ∪ {α}.
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With this, we can begin to build a set of ordinals for the natural numbers. By Definition

3.7, it is immediate that ∅ is an ordinal. As ∅ has no elements, it can be viewed as ∈-
minimal, and thus similar in characteristic to 0 ∈ N – which has no elements of N less

than it, so is <-minimal in N.

Definition 3.9. We can then begin to build on this using the successor function (Defi-

nition 3.8), as such:

0 = ∅,

1 = S(∅) = ∅ ∪ {∅} = {∅},

2 = S({∅}) = {∅} ∪ {{∅}} = {∅, {∅}},

3 = S({∅, {∅}}) = {∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅}, {∅, {∅}}},
...

This definition of the natural numbers as ordinals is owed to Hungarian-American mathe-

matician John von Neumann, as documented in his 1923 publication On the introduction

of transfinite numbers (van Heijenoort, 1967, pp. 346–354). Using this, we can develop

an idea of an ordinal-based notion of representation of the set of natural numbers, N.
However, as N is infinite, things do complicate. We shall thus introduce the notion of a

limit ordinal.

Definition 3.10. A limit ordinal is an ordinal α such that α ̸= ∅, and there does not

exist an ordinal β such that α = S(β).

We cannot take the existence of a limit ordinal as fact though, as we cannot simply reach

a limit ordinal by recursive application of the successor function to any finite ordinal –

by definition. Thus, a limit ordinal representation for N must be proven.

Proposition 3.11. The class of all finite ordinals (i.e. the class of natural numbers as

ordinals) is a set, which is the least infinite ordinal.

Proof. Let S be an infinite set, whose existence is specified by the axiom of infinity

(Axiom 6 in Definition 3.1). We have that ∅ is a member of every set, so deduce that

∅ = 0 ∈ S. By our successor function (Definition 3.8), we have that for every α ∈ S,
α+ 1 ∈ S – so every finite ordinal is in S.

If we have the class ω of all finite ordinals (natural numbers as ordinals), it follows that

ω is a subclass of S. But by the axiom schema of separation (Axiom 3 in Definition

3.1), we have that any subclass of a subset is a set. Moreover, it is easily observed that
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every member of ω is an ordinal, making ω both transitive and well-ordered by ∈, and
thus an ordinal itself by Definition 3.7.

As every finite ordinal is a member of ω, it follows by definition of well-ordering that ω

is greater than every finite ordinal, and there are no other infinite ordinals in ω. Hence,

it follows that ω is the least infinite ordinal.

Lemma 3.12. The set ω – the least infinite ordinal – which contains all finite ordinals

is isomorphic to N, the set of natural numbers, as an ordinal.

Proof. By John von Neumann’s definition of the natural numbers as ordinals (on page

16), each natural number can be represented by a unique ordinal and thus there is an

isomorphism between the set of natural numbers N and the set of finite ordinals ω.

Corollary 3.13. ω can be considered as the set N of natural numbers as an ordinal.

ω is a transfinite number, meaning that it is larger than finite.

3.3 Ordinal Arithmetic

We shall now define the operations of addition, multiplication, and exponentiation of

ordinals, which – as mentioned in subsection 3.2 – were given by Georg Cantor. This

shall lead us to some crucial results from which we shall prove Goodstein’s Theorem.

Definition 3.14. Addition of ordinals is defined as such, for all ordinals α, β:

• α+ 0 = α,

• α+ γ = ∪{α+ β : β < γ} if γ is a limit ordinal,

• α+ (β + 1) = (α+ β) + 1 for all ordinals β.

Definition 3.15. Multiplication of ordinals is defined as such, for all ordinals α, β:

• α · 0 = 0,

• α · γ = ∪{α · β : β < γ} if γ is a limit ordinal,

• α · (β + 1) = α · β + α for all ordinals β.

Definition 3.16. Exponentiation of ordinals is defined as such, for all ordinals α, β:

• α0 = 1,

• αγ = ∪{αβ : β < γ} if γ is a limit ordinal,

• αβ+1 = αβ + α for all ordinals β.
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Ordinal addition and multiplication are associative and distributive, and exponentiation

behaves by the same rules as integer exponentiation. It is important to note however

that addition and multiplication of ordinals are not commutative (Jech, 2003). This can

be shown by the above specified rules for α + ω and α · ω, where ω is the least infinite

ordinal:
1 + ω = ω

̸= ω + 1
and

2 · ω = ω

̸= ω · 2 = ω + ω.

This leads us to epsilon numbers, which play a part in the ordinal proof of Goodstein’s

Theorem.

Definition 3.17. An epsilon number is a transfinite ordinal number ε such that ωε = ε.

The smallest epsilon number is ε0 = ωωω
..

.

= sup{0, ω0 = 1, ω1, ωω, ωωω
, . . . }.

A crucial result from ordinal arithmetic on which our proof of Goodstein’s Theorem

relies involves the polynomial representation of ordinals.

Definition 3.18. Let α be an ordinal number, n ∈ ω, and let ϵ0, . . . , ϵn and δ0, . . . , δn

be ordinal numbers such that ϵ0 > ϵ1 > · · · > ϵn−1 and δ0, . . . , δn−1 < ω. Then the

expression

α =

n−1∑
i=0

ωϵi · δi

is the ω-polynomial representation of α, or the Cantor Normal Form of α.

This leads us to our main result from ordinal arithmetic, a theorem of Georg Cantor (as

stated by Potter, 2004), which we shall apply in order to develop an ordinal arithmetic

proof for Goodstein’s Theorem.

Theorem 3.19 (Cantor’s Normal Form Theorem). If α is any ordinal, then there exist

unique finite sequences (δi)i<n and (ϵi)i<n of ordinals with ϵ0 > ϵ1 > · · · > ϵn−1, such

that

α = ωϵ0δ0 + ωϵ1δ1 + · · ·+ ωϵn−1δn−1.

That is, for every ordinal number α, there exists a unique Cantor Normal Form for α.

Proof (Based on the proof given by Rubin, 2012). This proof is split into two parts: ex-

istence and uniqueness.

(Existence): For any finite ordinal α ∈ ω (i.e. any natural number as an ordinal), it is

trivial that there exists a Cantor Normal Form for α, which is given by

α = ωϵ0δ0,
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where ϵ0 = 0, and δ0 = α. Thus, we shall consider an ordinal α, such that ω < α, and

proceed by induction on α.

We begin with the supposition that every β < α has a Cantor Normal Form, and let

A = {ωϵi · δi : ωϵi · δi is a ω-monomial, and ωϵi · δi ≤ α}.

Let sup(A) = ωϵ · δ be the maximum monomial6 in A. If α = ωϵ · δ, then we are done.

So suppose ωϵ · δ < α, and let γ be an ordinal number such that

ωϵ · δ + γ = α. (3.1)

By construction, we have ωϵ · δ + ωϵ > α, and by Definition 3.15, we have

ωϵ · δ + ωϵ = ωϵ · (δ + 1) > α. (3.2)

From equations 3.1 and 3.2, it follows that ωϵ > γ. Hence, γ < ωϵ < ωϵ · δ < β, and –

by the inductive hypothesis – γ has a Cantor Normal Form

γ =
n−1∑
i=0

ωϵi · δi, (3.3)

where ϵn−1 < ϵ, as γ < ωϵ. So we may substitute the Cantor Normal Form for γ

(equation 3.3) into equation 3.1, to derive a Cantor Normal Form for α:

α = ωϵ · δ +
n−1∑
i=0

ωϵi · δi.

Hence, we have proved the existence of a Cantor Normal Form for every ordinal number.

(Uniqueness): Let p =
∑n−1

i=0 ω
ϵi · δi and q =

∑m−1
i=0 ωσi · ρi be ω-polynomials. Suppose

that either m ̸= n or m = n, and for at least one i < m, n, we have ωϵi · δi ̸= ωϵi · ρi.
We have that, without loss of generality, m ≤ n. Then we consider two cases:

1. m < n, and for every i ∈ {1, 2, . . . ,m− 1}, we have:

σi = ϵi+(n−m) and ρi = δi+(n−m).

2. There is some 0 ≤ j ≤ m− 1 such that for every j < i ≤ m− 1,

σi = ϵi+(n−m) and ρi = δi+(n−m),

and (ωσi · ρi) ̸= (ωϵi+(n−m) · δi+(n−m)).

6A monomial is a polynomial with only one term.
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In Case 1,

p ≥
m−1∑
i=0

ωσi · ρi + ωϵn−m−1 · δn−m−1 = q + ωϵn−m−1 · δn−m−1 > q.

In Case 2, we have that as (ωσi · ρi) ̸= (ωϵi+(n−m) · δi+(n−m)), either q < p, or p < q.

It follows that two different Cantor Normal Forms cannot be equal, and thus Cantor

Normal Forms are unique.
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4 Proof of Goodstein’s Theorem using Ordinal Arithmetic

We shall begin the proof of Goodstein’s Theorem (Theorem 2.1) by defining a new

sequence (γi(a))i∈N, based on Goodstein Sequences, but with a twist which introduces

transfinite ordinals. We shall refer to this as the Gamma Sequence.

Definition 4.1. The ith term of the Gamma Sequence for a ∈ N is obtained by writing

the ith term of the Goodstein Sequence for a in hereditary base-(i + 1) notation, and

performing a shift of base whereby each occurrence of (i+ 1) is replaced by ω.

This shift of base happens in an identical fashion to the shift of base in Goodstein

Sequences, where we replace all occurrences of i with i + 1, and when we perform

such shift, we arrive at an equation in Cantor Normal Form – which we previously saw

generates a unique ordinal output.

Example 4.2. We have from Example 1.15 that the first 5 terms of the Goodstein

Sequence for 5 are as follows:

G1(5) = 5 = 22 + 1,

G2(5) = 27 = 33,

G3(5) = 255 = 44 − 1,

G4(5) = 467 = 3 · 53 + 3 · 52 + 3 · 5 + 2,

G5(5) = 775 = 3 · 63 + 3 · 62 + 3 · 6 + 1.

Using this, we may obtain the first 5 terms of the Gamma Sequence (γi(5))i∈N, as follows:

γ1(5) = (22 + 1
2 7→ ω−−−−→ ) ωω + 1,

γ2(5) = (33
3 7→ ω−−−−→ ) ωω,

γ3(5) = (44 − 1
4 7→ ω−−−−→ )ωω − 1,

γ4(5) = (3 · 53 + 3 · 52 + 3 · 5 + 2
5 7→ ω−−−−→ ) 3 · ω3 + 3 · ω2 + 3 · ω + 2,

γ5(5) = (3 · 63 + 3 · 62 + 3 · 6 + 1
6 7→ ω−−−−→ ) 3 · ω3 + 3 · ω2 + 3 · ω + 1.

By construction, the Gamma Sequence terminates at the same stage that the Goodstein

Sequence terminates, but also – by nature of transfinite ordinals being larger than every

finite ordinal (i.e. every natural number) – we can also observe the following:

Lemma 4.3. For every i ∈ N, and for every a ∈ N, the following inequality holds:

Gi(a) ≤ γi(a).
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Proof. If Gi(a) ≥ i+ 1, then writing Gi(a) in hereditary base-(i+ 1) notation includes

at least one term which contains i+ 1. Hence, γi(a) has at least one term containing ω

by construction – which makes γi(a) transfinite. For every i, Gi(a) ∈ N, and thus – as

an ordinal – Gi(a) ∈ ω. By definition of ordinal numbers, it follows that Gi(a) < ω, so

Gi(a) is finite. It follows now that, in this case, Gi(a) < γi(a).

If however Gi(a) < i + 1, then writing Gi(a) in hereditary base-(i + 1) notation is the

same as writing Gi(a) as an integer. Thus, γi(a) contains no occurrences of ω and

γi(a) = Gi(a).

Hence, in all cases, we have Gi(a) ≤ γi(a).

From this, it follows that the Gamma Sequence (γi(a))i∈N of a dominates the Goodstein

Sequence (Gi(a))i∈N of a, for all a ∈ N. Thus, we have the following corollary of Lemma

4.3.

Corollary 4.4. Gi(a) exists if and only if γi(a) exists.

Proof. This follows from the definition of Goodstein Sequences and Gamma Sequences

(Definitions 1.8 and 4.1 respectively), and Lemma 4.3.

This result is significant, as it now suffices to show that the Gamma Sequence (γi(a))i∈N

converges to 0 for every a in order to prove Goodstein’s Theorem.

Lemma 4.5. For every a ∈ N, and for every i ∈ N for which γi(a) exists, we have

γi+1(a) < γi(a).

That is, the Gamma Sequence is strictly decreasing.

Proof. To begin, notice that the following definitions for γi(a) are equivalent, where

Gi(a) is the ith term in the Goodstein Sequence for a ∈ N, written in hereditary base-

(i+ 1) notation:

Gi(a)
i+1 7→ ω−−−−−−→ = γi(a),

Gi(a)
i+1 7→ i+2−−−−−−−→ i+2 7→ ω−−−−−−→ = γi(a), (4.1)

where “Gi(a)
i+1 7→ b−−−−−→ ” denotes changing all occurrences of i + 1 in Gi(a) to b. So it

does not matter what hereditary base we are shifting from when we shift to hereditary

base-ω notation. Thus, we can define γi+1(a) as:

Gi(a)
i+1 7→ i+2−−−−−−−→ cut−−→ i+2 7→ ω−−−−−−→ = γi+1(a), (4.2)
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where “
cut−−→ ” denotes subtracting 1 from the result to its left. So

Gi(a)
i+1 7→ i+2−−−−−−−→ cut−−→ i+2 7→ ω−−−−−−→ = Gi+1(a)

i+1 7→ i+2−−−−−−−→ i+2 7→ ω−−−−−−→ = γi+1(a).

If we denote the transformation Gi(a)
i+1 7→ i+2−−−−−−−→ = c, then we may simplify equations

4.1 and 4.2 to c
i+2 7→ ω−−−−−−→ = γi(a) and c

cut−−→ i+2 7→ ω−−−−−−→ = c − 1
i+2 7→ ω−−−−−−→ = γi+1(a)

respectively.

In order to complete the proof, we now need to show that for any x, and any b we have

(x
b 7→ ω−−−−→ ) < (x+ 1

b 7→ ω−−−−→ ). We can do this by induction on y, to show that for every

z < y, we have (z
b 7→ ω−−−−→ ) < (y

b 7→ ω−−−−→ ).

Suppose that for all y < x+ 1 and z < y, the inequality (z
b 7→ ω−−−−→ ) < (y

b 7→ ω−−−−→ ) holds.

We want to show that (x
b 7→ ω−−−−→ ) < (x+ 1

b 7→ ω−−−−→ ). To see this, we shall write x+ 1 in

hereditary base-b notation. That is,

x+ 1
h base-b−−−−−→ = bk1 + bk2 + · · ·+ bks−1 + bks ,

where ki ≤ ki+1, and instead of writing dbk if we have d occurrences of bk for some k,

we instead write bki + bki+1 + · · ·+ bki+d , where ki = ki+1 = · · · = ki+d = k, to denote d

copies of bk.

We let p = bk1 + bk2 + · · ·+ bks−1 and q = ks (written in hereditary base-b), such that

x+ 1 = p+ bq. With this, we observe that bq ≤ x+ 1, so q < x+ 1. Now, we can write

(x+ 1
b 7→ ω−−−−→ ) = (p+ bq

b 7→ ω−−−−→ ) = ρ+ ωσ, (4.3)

where ρ denotes (p
b 7→ ω−−−−→ ), and σ denotes (d

b 7→ ω−−−−→ ).

If q = 0, then x+ 1 = p+ 1, and x = p, so (x
b 7→ ω−−−−→ ) = ρ < ρ+ 1 = (x+ 1

b 7→ ω−−−−→ ).

If q > 0, we can write x = p+ bq − 1, and expand this to be

x = p+ bq−1(b− 1) + bq−2(b− 1) + · · ·+ b(b− 1) + (b− 1).

So, we have

(x
b 7→ ω−−−−→ ) = ρ+ ω(q−1

b 7→ ω−−−−→ )(b− 1) + ω(q−2
b 7→ ω−−−−→ )(b− 1) + · · ·+ ω(b− 1) + (b− 1).

(4.4)

By the inductive hypothesis, we have that each of the underlined terms in Equation 4.4

is less than ωσ. So the sum of all of the underlined terms (ω(q−1
b 7→ ω−−−−→ )(b− 1) + · · ·+

ω(b− 1) + (b− 1)) must also be less than ωσ.

In particular, we have that (x
b 7→ ω−−−−→ ) < ρ + ωσ, and so it follows from Equation 4.3

that (x
b 7→ ω−−−−→ ) < (x+ 1

b 7→ ω−−−−→ ).
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Therefore, for every a ∈ N, and for every i ∈ N for which γi(a) exists, we have

γi(a) > γi+1(a).

Now, the final building block to the proof of Goodstein’s Theorem is the following

lemma:

Lemma 4.6. There is no infinite descending sequence of ordinals

ε0 > α0 > α1 > · · ·

Proof. By definition, ordinals are well-ordered by ∈, and so for any ordinals αi, αj , we

have αi < αj if and only if αi ∈ αj . If an infinite descending sequence or ordinals

existed, then it would follow that there is no ∈-minimal ordinal – which is absurd, as it

gives rise to a contradiction against ε0 being an ordinal.

We have now seen that (γi(a))i∈N is a decreasing sequence of ordinals, and that there

does not exist an infinite decreasing sequence of ordinals – so such a decreasing sequence

of ordinals must converge to the ordinal ∅ (or 0 by Definition 3.9). Hence, it follows

that there must exist some n ∈ N such that γn(a) = 0 for all a ∈ N. Combining

knowledge of this consequence of Lemma 4.5 with Corollary 4.4, we see that every

Goodstein Sequence must terminate after a finite number of steps. Thus, we have

proven Goodstein’s Theorem (Theorem 2.1).
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Part III

Unprovability in Peano Arithmetic

“For nothing worthy proving can be proven, nor yet disproven.”

- Alfred Tennyson, as quoted in An Outline of Set Theory.7

The axiomatisation of areas of mathematics has been of significant importance to mathe-

maticians for thousands of years – with mathematicians as early as Euclid of Alexandria

seeking to axiomatise elements of mathematics in Ancient Egyptian times (O’Connor

and Robertson, 1999). In the mid-to-late nineteenth century, axiomatisation of arith-

metic developed into a prominent research area in the mathematical community, which is

owed to the the work of German mathematician Hermann Graßmann. Graßmann proved

that many properties of arithmetic could be derived from fundamental facts about the

successor operation and induction in his book Lehrbuch der Arithmetik (Grassmann,

1861, cited by Wikipedia Contributors, 2022).

In 1889, Italian mathematician Giuseppe Peano published his now famous axioms for

arithmetic of the natural numbers, which are still widely regarded as the definitive

axioms of arithmetic today. However, as will be discussed in section 7, there exist true

statements in mathematics which remain unprovable within certain axiomatic systems,

and Goodstein’s Theorem is precisely this to Peano Arithmetic.

To allow us to show the unprovability of Goodstein’s Theorem in Peano Arithmetic, we

shall first see an introduction to symbolic logic. This will provide a foundation from

which to understand Peano’s axioms for arithmetic, and to be able to prove the inability

of such axioms to the unprove of Goodstein’s Theorem (Theorem 2.1).

7Henle (1986).
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5 An Introduction to Symbolic Logic and Model Theory

Thus far, we have seen examples of logical statements and axioms, but we have not yet

seen a formal definition of axiomatisation, or an introduction to what axioms are and

what it means for a theory to be axiomatisable. In this section, we shall develop a core

understanding some relevant concepts in and results of Mathematical (symbolic) Logic

and Model Theory, based on the works of Kirby (2019), Smullyan (1968), and van Dalen

(2013), as a foundation to demonstrating the unprovability of Goodstein’s Theorem in

Peano Arithmetic.

5.1 Languages and Structures

In symbolic logic, we consider a language L on which we base everything we do. In

essence, a language in a logical sense is alike to a language in the natural sense of how

we communicate with one another. In natural language, we have letters from which we

build words, and we construct sentences from such words which we can interpret based

on context, and we derive meaning from such sentences. We see now that a language in

symbolic logic is very similar to this.

Definition 5.1. A language L consists of:

• A set of relation symbols (e.g. <).

• A set of function symbols (e.g. +, ·).

• A set of constant symbols (e.g. 0, 1).

• For each relation and function symbol, an arity.

The arity of a relation or function symbol is the number of arguments it takes input

from. For example, a binary function symbol such as + takes two arguments, so has

arity 2. We could also define a function f : x 7→ x + 1, which has arity 1, as it only

takes one argument as input (the value for x). We call this a unary function. Similarly,

for relation symbols, we can have < (x, y) = x < y, a binary relation symbol. Also, for

some constant symbol c, we may define the relation symbol <c (x) = x < c which takes

only one argument as input, and so is unary.

A language by itself does not have much meaning, as it does not specify a set (or domain)

on which it acts, and thus the symbols within a language do not have any interpretation.

We must thus also introduce structures. These are essentially a language paired with a

set, which gives meaning to the language via an interpretation.
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Definition 5.2. An L-structure S consists of a set S, the domain of the structure,

together with interpretations of the symbols in L, as such:

• Each relation symbol R, of arity n, in L, is interpreted as a subset RS of Sn, where

each r ∈ RS ⊆ Sn is an n-tuple (r1, r2, . . . , rn) satisfying the relation R in S.

• Each function symbol f , of arity n, in L, is interpreted as a function fS : Sn → S.

• Each constant symbol ci in L is interpreted as an element cSi ∈ S.

For sake of understanding, we may think of an L-structure to a logical language L as we

do a dictionary is to a natural language – it provides a definition for what the elements

of the language actually mean, and how they should be interpreted in a given context.

Example 5.3. The language Ls-ring of semirings is defined as ⟨+, ·, 0, 1⟩, where + and

· are binary function symbols, and 0 and 1 are constant symbols.

Remark. It is important to realise that in the above example (5.3), the symbols 0 and

1 are indeed symbols and are not necessarily equal to the natural numbers 0 and 1

respectively. Usually, the symbol 0 is used to represent the additive identity, and the

symbol 1 is used to represent the multiplicative identity element, which do often happen

to correspond to the natural numbers 0 and 1, but this is not necessarily implied and

does depend on the structure through which we interpret the symbols.

Example 5.4. If we consider the Ls-ring-structure

Ns-ring =
〈
N; +Ns-ring , ·Ns-ring , 0Ns-ring , 1Ns-ring

〉
,

we have interpreted the symbols of the language Ls-ring by their usual interpretations

in N, where +Ns-ring and ·Ns-ring are the usual addition and multiplication over N, and
0Ns-ring = 0 ∈ N and 1Ns-ring = 1 ∈ N are the additive and multiplicative identity elements

in N respectively.

Notation. As we will primarily be considering Ns-ring throughout this document, we

shall adopt a minor abuse of notation and simply write Ns-ring = ⟨N; +, ·, 0, 1⟩, omitting

the superscript “Ns-ring” on the function and constant symbols in the structure and

instead assuming +, ·, 0, 1 to be their interpretations in Ns-ring.

5.2 Formulas and Sentences

In symbolic logic and model theory, we are concerned with proving whether statements

are true or false in certain structures. In order to do this, we must have a way of

expressing statements in a way which can be understood by symbolic logic, and we do

this with formulas in a language L (called L-formulas), constructed of L-terms.
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Definition 5.5. L-terms are strings of symbols from the language L, defined recursively

as:

• Every variable is a term.

• Every constant symbol is a term.

• If f is a function symbol of arity k, and t1, . . . , tk are terms, then f(t1, . . . , tk) is

a term.

Only something built of finitely many repetitions of the above three steps in any order

is an L-term.

Definition 5.6. An L-formula is defined recursively, as such:

• If ti, tj are terms, then (ti = tj) is a formula.

• IfR is an k-ary (arity k) relation symbol, and t1, . . . , tk are terms, thenR(t1, . . . , tk)

is a formula.

• If φ, θ are formulas, then ¬φ (the negation of φ), (φ → θ) (φ implies θ), (φ ∧ θ)
(φ and θ), and (φ ∨ θ) (φ or θ) are formulas.

• If φ is a formula and x is a variable, then ∃x[φ] and ∀x[φ] (there exists an x such

that φ is true, and for all x, φ is true, respectively) are formulas.

Only something built of finitely many repetitions of the above three steps in any order

is an L-formula.

When considering axioms and the statement of Goodstein’s Theorem, we are interested

in L-sentences, which are L-formulas with no free variables, where a free variable is one

not bound by a quantifier (i.e. ∀ or ∃).

Example 5.7. The following are examples of formulas and sentences.

1. (x < 1) is a formula, and x is a free variable in such as it is not bound within the

scope of a quantifier.

2. ∀x[(x = 0) ∨ (0 < x)] is a sentence, as the variable x is bound by the universal

quantifier ∀.

3. ∃x[(x < y) ∧ (0 < x)] is a formula, as the variable y is free due to it not being

quantified (i.e. the instance of y in this formula is not within the scope of ∀y or

∃y). The variable x is bound though, by the existential quantifier ∃.

We shall now introduce some notation to describe the validity of an L-formula (or L-
sentence) in a given L-structure.
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Definition 5.8. If ψ is a formula with k free variables, and s = (s1, . . . , sk) is a k-tuple

of elements in the domain S of an L-structure S, then we have S |= ψ(s), read “S models

ψ(s)”, to mean that the formula ψ(a) is true in the structure S.

If we let the L-sentence from Example 5.7.2 be ψ, we have – as shown above – Ns-ring |= ψ,

and Zs-ring ̸|= ψ. That is, Ns-ring models ψ, whilst Zs-ring does not model ψ. As ψ is an

L-sentence, it has no free variables – so we do not need to define a tuple of variables

from N or Z, as in Definition 5.8.

As well as being able to say that an L-structure S models an individual L-sentence, we
may also say that it models a collective set of L-sentences. For example, if Γ is a set of

L-sentences, then we may write S |= Γ to mean that every sentence in Γ is true in S.

The notion described by Definition 5.8 does not however appeal to provability. For this,

we introduce the symbol ⊢, as follows.

Definition 5.9. For a set Γ of L-formulas, and some formula φ, we have Γ ⊢ φ (Γ

entails φ) if φ can be deduced from formulas in Γ.

Now, we see the concepts of consistency and completeness of L-sentences:

Definition 5.10. A set Γ of L-sentences is consistent if for every L-sentence ψ ∈ Γ, we

have ¬ψ ̸∈ Γ. That is, there are no contradictory L-sentences in Γ.

Definition 5.11. A set Γ of L-sentences is complete if for every L-sentence φ, we have

either Γ ⊢ φ, or Γ ⊢ ¬φ. That is, if a set Γ of L-sentences is complete, then any

L-sentence is logically equivalent to some L-sentence in Γ.

5.3 Peano’s Axioms of Arithmetic

In mathematics, we may consider the theory of certain classes of structures; for example,

the theory of rings, or the theory of groups. Theory refers to the deductively closed 8 set

of all L-sentences which are true for rings or groups respectively. Of course, it would be

counter-intuitive, never-mind impossible, to list all L-sentences true in these classes of

structures when introducing them. Thus, axiomatisation is useful here.

A set of axioms is a finite, countable set of L-sentences which characterises the theory

T of a class of structures C, and which essentially aims to form a basis from which any

statement ϕ which is true in T can be derived. That is, if ϕ can be deduced from the

axioms for the theory T of C, then T ⊢ ϕ. If T does in fact accurately portray the

8A set Γ of L-sentences is deductively closed if for any L-sentence ψ, if Γ ⊢ ψ, then ψ ∈ Γ.
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characteristics of C, and provides the means to proving facts about the behaviour of C,
then we have C |= T .

In 1889, Italian mathematician Giuseppe Peano published Arithmetices principia nova

methodo exposita – translating from Latin to mean The principles of arithmetic presented

by a new method. Within such, Peano stated nine axioms for Ns-ring. Today, we only

consider a subset of Peano’s axioms, as it is noted by van Heijenoort (1967) that some

of the original axioms are contained in the underlying logic.

Definition 5.12. [Axioms of Peano Arithmetic] As stated by Kirby (2019), a mod-

ernised interpretation of the axioms of Peano Arithmetic are as follows.

1. ∀x[x+ 1 ̸= 0],

which says that there exists no natural number whose successor is 0.

2. ∀x[x ̸= 0→ ∃y[x = y + 1]],

which says that each non-zero natural number is the successor to some other

natural number.

3. ∀xy[x+ 1 = y + 1→ x = y],

which says that if the successor of two natural numbers is equal, then those two

natural numbers are equal.

4. ∀x[x+ 0 = x],

which says that 0 is the additive identity element.

5. ∀xy[x+ (y + 1) = (x+ y) + 1],

which says that the sum of a natural number and the successor of another natural

number is equal to the successor of the sum of the two natural numbers.

6. ∀x[x · 0 = 0],

which says that multiplying anything by 0 is equal to 0.

7. ∀[x · (y + 1) = (x · y) + x],

which says that multiplication is distributive.

Peano Arithmetic also includes an induction schema, making the complete theory of

Peano Arithmetic the closure of logical formulas obtained from the above axioms com-

bined with the following:

Induction Schema: (ϕ(0) ∧ ∀x[ϕ(x)→ ϕ(x+ 1)])→ ∀x[ϕ(x)].

The descriptors of each of the axioms stated in Definition 5.12 are given in the context

of the natural numbers N, but in truth, there do exist other models of Peano Arithmetic
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which are not isomorphic to N. These are referred to as non-standard models of Peano

Arithmetic (Kaye, 1991), whose existence is proven by the Löwenheim-Skolem Theorem

– but this transcends relevance to the discussion of this report. Thus, we are not

interested in non-standard models in the context of demonstrating the unprovability of

Goodstein’s Theorem, so we shall just be considering Peano’s axioms in the context of

the natural numbers (i.e. as interpreted in the structure Ns-ring).
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6 Unprovability of Goodstein’s Theorem

In proving the unprovability of Goodstein’s Theorem (Theorem 2.1) in Peano Arith-

metic, we shall consider a more formal expression of the theorem, in the language of

symbolic logic. Goodstein’s Theorem states that for all a ∈ N, there is some i ∈ N
such that Gi(a) = 0. To simplify notation, we shall consider the associated function

G : N × N → N defined by g(i, a) = Gi(a). Thus, we have the following symbolic sen-

tence which is logically equivalent to – and thus characterises – Goodstein’s Theorem:

Theorem 6.1 (A symbolic restatement of Theorem 2.1).

∀a∃i[g(i, a) = 0],

where g(i, a) = Gi(a) – the ith term in the Goodstein Sequence for a ∈ N.

We have seen that Goodstein’s Theorem is a true statement about the natural numbers,

which we were able to prove by ordinal arithmetic. As such, we may deduce that the

negation of Goodstein’s Theorem is false, and cannot be proven. Therefore, by showing

that Goodstein’s Theorem is unprovable, we can actually extend our statement to a

stronger one, as stated by Smith (2013):

Theorem 6.2 (Kirby and Paris, 1982). Goodstein’s Theorem is undecidable in Peano

Arithmetic (if Peano Arithmetic is consistent).

In this section, we shall discuss the key ideas involved in proving Theorem 6.2, begin-

ning with an account of the main result of Kirby and Paris (1982) – which proves that

the notion of transfinite induction of ordinals up to ε0 is necessary in formulating a

proof of Goodstein’s Theorem. We next explore Gentzen’s consistency proof for Peano

Arithmetic, which – in conjunction with Gödel’s Second Incompleteness Theorem – ex-

hibits Peano Arithmetic’s inability to handle transfinite induction up to ε0 as a corollary

(Smith, 2013); thus deducing the consequence that Goodstein’s Theorem is undecidable

in Peano Arithmetic.

6.1 The Kirby-Paris Theorem

Whilst Theorem 6.2 is the final result deduced from the findings presented by Kirby and

Paris (1982), the main result which gives way to this is as follows.

Theorem 6.3 (The Kirby-Paris Theorem; Kirby and Paris, 1982). Induction up to ε0

is equivalent to Goodstein’s Theorem.

Kirby and Paris present a proof of this result which utilises rapidly-growing functions

derived from combinatorial statements introduced by Ketonen and Solovay (1981), in
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order to recognise indicators9 in non-standard models of Peano Arithmetic. The Kirby-

Paris Theorem presents the consequence that the unprovability of Goodstein’s Theorem

in Peano Arithmetic can be derived by a proof that Peano Arithmetic cannot handle

induction up to ε0, and this is precisely what we shall see in the next subsection – as an

implication of Gentzen’s consistency proof for arithmetic.

6.2 Gentzen’s Consistency Proof

As noted by Rathjen (2015) and as we may deduce from the proof we gave of Goodstein’s

Theorem in Section 4, the proof of Goodstein’s Theorem is a consequence of there

being no infinitely descending primitive recursive sequences of ordinals, and Theorem

6.3 informs that induction up to ε0 is required to prove this fact. This subsection

considers a proof of the consistency of Peano Arithmetic, which was famously presented

by Gentzen (1936), by proof of the arithmetical statement Con(PA) which implies the

consistency of Peano Arithmetic, using ε0-induction.

Theorem 6.4 (Gentzen’s Consistency Theorem). Peano Arithmetic is Consistent.

Gentzen’s original proof of Theorem 6.4 is difficult and highly technical. As such, instead

of giving a formal proof of his consistency theorem, we shall simply outline the key ideas

of the proof which lead us to the relevant results for proving the undecidability of

Goodstein’s Theorem.

A sketch proof of Theorem 6.4. Gentzen’s proof begins by noting that the lack of con-

tradiction within proofs derived in Peano Arithmetic relies on the lack of contradiction

within certain simpler proofs derived in Peano Arithmetic, which make up the con-

stituent parts of the larger proof (Smith, 2013). He recognises that this fact gives way

for a linear ordering of proofs by way of assignment of transfinite ordinal numbers to

proofs, correlating to the nature of their dependence on other proofs.

The necessity for the linear ordering of proofs to be transfinite is derived by the simple

observation that some proofs depend on an infinite number of smaller proofs. For exam-

ple, Goodstein’s Theorem (Theorem 6.1) is a universal statement (i.e. it is a statement

about all natural numbers), and as such would be the culmination of an infinite number

9LetM be a non-standard model of Peano Arithmetic, with P a property of a subset {x ∈M : x < n}
of M for some n ∈M . An indicator for P in M is a function F :M2 →M which satisfies

F (a, b) > N ⇐⇒ there exists {x ∈M : x < n} ⊆M with a ∈ {x ∈M : x < n} < b

and {x ∈M : x < n} has propertyP for all a, b ∈M.
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of proofs – one for each natural number – that the Goodstein Sequence for each natural

number terminates. A finite ordinal could not capture the dependence of the proof of

Goodstein’s Theorem on infinitely many smaller proofs, and so transfinite ordinal num-

bers are thus necessary to represent the ordering of proofs according to their complexity

with regards to the smaller proofs contained within. The ordinals required to prove

the consistency of Peano Arithmetic are thus sums of powers of ω (i.e. Cantor Normal

Forms) – so Gentzen’s proof relies on transfinite induction up to ε0.

As detailed by Smith (2013), listing the simpler proofs contained within more complex

proofs can be understood as a reduction task dealing with proofs encoded by Gödel

numbers10, handled by primitive recursive functions. Peano Arithmetic can deal with

both primitive recursive functions and codings of proofs, and so its only short-falling

is in its inability to handle transfinite induction up to ε0. As such, we may appeal to

Peano Arithmetic with induction up to ε0 (PA+I), which replaces Peano’s Induction

Schema with the rule of quantifier-free induction up to ε0 (Simpson, 2009):

The rule of quantifier-free induction up to ε0:

From ϕ(0) and ϕ(x) → ϕ(x + 1), deduce ϕ(y) for any formula ϕ and any y < ε0.

Additionally, if y < ε0 is a limit ordinal, and φ(x) holds for all x < y, then we

deduce φ(y).

Gentzen finally alludes to our familiar concept of the well-foundedness of ordinal numbers

in addressing the derivation of an absurdity (acording to the following lemma) from the

aforementioned reduction task to complex proofs.

Lemma 6.5. A theory T is consistent if and only if the empty sequent11 is not derivable

from T .

Assuming for contradiction that PA+I contains proofs P of the empty sequent, and

letting αi be the ordinal representation of the reduction task applied recursively i times

to proofs P of the empty sequent, Gentzen derives a sequence of ordinals

α0 > α1 > α2 > · · · > αn

for all n (Rathjen and Sieg, 2020). This says precisely that if PA+I contains proofs of

the empty sequent, there exists an infinite descending sequence of ordinal numbers, but

this contradicts Goodstein’s Theorem, which Kirby and Paris (1982) notes is equivalent

to the existence of no such sequence. Thus, PA+I does not derive the empty sequent

and so is consistent by Lemma 6.5 – which proves Gentzen’s Consistency Theorem.

10See Section 15.1 of Smith (2013) for a comprehensive introduction to Gödel numbering.
11The empty sequent is the logical formula ( → ) – i.e. nothing implies nothing (Gratzl, 2010).
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6.3 Gödel’s Second Incompleteness Theorem

As a result of Gentzen’s consistency proof, we see that the consistency of Peano Arith-

metic is proven in the presence of induction up to ε0, which Theorem 6.3 informs is

necessary to prove Goodstein’s Theorem. Therefore, we have that Goodstein’s Theorem

implies Con(PA) – a formula which expresses the consistency of Peano Arithmetic; so

if Peano Arithmetic proves Goodstein’s Theorem, then it also proves Con(PA) (thus

proving its own consistency).

The final building block to our proof of Theorem 6.2 is owed to the following significant

theorem of Kurt Gödel.

Theorem 6.6 (Gödel’s Second Incompleteness Theorem12). For any consistent theory

T within which a certain amount of elementary arithmetic can be carried out, the

consistency of T cannot be proved in T itself. That is: T cannot prove Con(T ).

As a result of Gödel’s Second Incompleteness Theorem, it follows immediately that

Peano Arithmetic must not prove its own consistency, which we have seen to follow

from Goodstein’s Theorem by Theorem 6.3 and Gentzen’s consistency proof, outlined in

subsection 6.2. Thus, bringing this all together, we have proven that if Peano Arithmetic

is consistent, then Goodstein’s Theorem cannot be proved – making it undecidable in

Peano Arithmetic. This concludes our proof of Theorem 6.2.

12As stated by Raatikainen (2022).
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7 Consequences of Goodstein’s Theorem and its Unprov-

ability

To quote Henle (1986), the implications of Goodstein’s Theorem which have been ex-

plored throughout this report make the theorem “remarkable in many ways”. Aside

from being a surprising statement in its own right, Goodstein’s Theorem’s unprovabil-

ity in Peano Arithmetic makes it a purely arithmetical statement about finite integers

which requires a notion of infinite ordinals in order to be proven – making Goodstein’s

Theorem a purely number theoretic exhibition of the findings of Gödel and Gentzen.

As such, there are many implications and further discussions to be had surrounding the

consequences of the unprovability (undecidability) of Goodstein’s Theorem in Peano

Arithmetic.

7.1 The Incompleteness of Peano Arithmetic

Arguably some of the most remarkable results which define our understanding of sym-

bolic logic were given by Kurt Gödel, to whom Theorem 6.6 is attributed. Published

along with the aforementioned Second Incompleteness Theorem was another incomplete-

ness theorem (Gödel, 1931):

Theorem 7.1 (Gödel’s First Incompleteness Theorem13). If a theory T is axiomatised

and arithmetically sound14, then there is some L-sentence ϕ such that T ̸⊢ ϕ and T ̸⊢ ¬ϕ.

Barwise (1977) claims that since the publication of Gödel’s Incompleteness Theorems,

mathematicians were immersed in discovering a strictly arithmetical example of in-

completeness in Peano Arithmetic, and it is clear to see that Goodstein’s Theorem is

precisely this – as first proven by Kirby and Paris (1982). Goodstein’s Sequence thus

bears huge significance in existing as an example of Gödel’s First Incompleteness Theo-

rem. Furthermore, with the reliance of the proof of its unprovability on Gödel’s Second

Incompleteness Theorem, Goodstein’s Theorem truly acts as a testament to the results

given by Gödel (1931).

As a result of Goodstein’s Theorem as a number theoretic example of the incomplete-

ness of Peano Arithmetic (and subsequently, Gödel’s Theorems), questions may be posed

around the definition of truth in arithmetic; namely, the nature of the grey area sur-

rounding how we determine the truth of a given statement, and in what language or

structure we are able to do so. Prior to knowledge of Goodstein’s Theorem, or any other

13As stated by Smith (2013).
14A theory is sound if everything which can be deduced/proven is true.
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results independent of Peano Arithmetic, one may suppose that truth follows only from

proof – but as we have seen, the truth of Goodstein’s Theorem is not supported by a

proof in Peano Arithmetic, due to incompleteness.

The notion of truth has been given significant attention over the past century within

the study of logic, with Tarski (1936) giving arguably the most influential account and

exploration of the concept of truth – stating that there is no first-order, arithmetical L-
formula which can express truth in arithmetic, and that we must transcend the expressive

power of L, with a metalanguage15. However, whilst Tarski’s take on truth is interesting,

there are more relevant topics for discussion, motivated by our account of Goodstein’s

Theorem.

Goodstein’s Theorem’s unprovability and thus the subsequent incompleteness of Peano

Arithmetic illustrates that not all true arithmetical statements are provable in a con-

sistent theory of arithmetic, and thus the definition of truth in arithmetic becomes

subjective. We see this portrayed by the necessity of appealing to another theory in our

proof of the unprovability of Goodstein’s Theorem in Peano Arithmetic and in the proof

of Peano Arithmetic’s consistency.

Considerations of how we define truth add significant substance to the implications of

the unprovability of Goodstein’s Theorem in Peano Arithmetic. To both the uninitiated

and mathematical researchers alike, the lack of equivalence of provability and truth

poses questions of how we should in fact define a true theory of arithmetic. Gödel’s

Incompleteness Theorems and examples such as Goodstein’s Theorem show us that no

theory is complete, and so there is no “perfect” theory of arithmetic which models

arithmetic consistently.

Whilst the decidability of Goodstein’s Theorem relies on a foundation of the axioms of

ZFC, it is also true that ZFC is capable of proving a lot more than is necessary within

the structure of arithmetic. This motivates the question of how much set theory we are

really willing to take in order to decide every possible statement of arithmetic. Alas,

further questions of consistency and incompleteness follow from taking such a stronger

theory for arithmetic – such as the decidability of the consistency of that stronger theory

– for example, ZFC, whose absolute consistency is undecidable16 by Gödel’s Second

Incompleteness Theorem (Jech, 2003) – as shall be discussed in the next subsection.

15A metalanguage is a language which is used to describe another language.
16By absolute consistency, we mean the ability to state with 100% certainty that the theory is consis-

tent – with no reliance on any other undecided consistencies.
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7.2 The Consistency of Peano Arithmetic

An inconsistent theory allows provability of un-sound statements, with any derivable

contradiction giving way to the provability of yet more absurd statements. For example,

if Peano Arithmetic contained an inconsistency, then it may even be possible to prove

the negation of Goodstein’s Theorem – which would be absurd following the proof given

in Section 4, which tells us that Goodstein’s Theorem is true.

The equivalence of Goodstein’s Theorem to a statement of the consistency of Peano

Arithmetic told us that Goodstein’s Theorem is unprovable if and only if Peano Arith-

metic is consistent, and we assumed the consistency of such throughout in order to

derive the unprovability of Goodstein’s Theorem. Various proofs of the consistency of

Peano Arithmetic have been given (Chow, 2019) – including that of Gentzen (1936) –

however there still exists reasonable doubt, and the consistency of Peano Arithmetic

is considered an open problem by some, as a result of Gödel’s Second Incompleteness

Theorem (Theorem 6.6).

Gödel (1931) states that the consistency of a theory – Peano Arithmetic, for example –

cannot be proven within the theory itself; thus, one must appeal to a stronger theory to

do so. This, of course, relies on the consistency of the chosen stronger theory, which again

cannot be proven by itself, and must rely on yet another stronger theory. Chow (2019)

remarks that generally, Mathematicians consider the theory of ZFC (see Definition 3.1)

to be the foundation of truth in Mathematics, and thus it is typically considered that

a mathematical statement holds only if it can be proven in ZFC. In this case, the

consistency of Peano Arithmetic is accepted, and thus our assumption of its truth is

valid in this sense, however the uncertainty of it due to Gödel’s Second Incompleteness

Theorem is equally valid, and should be considered in discussing the unprovability of

Goodstein’s Theorem in Peano Arithmetic.

7.3 Final Remarks

As remarked previously, Goodstein’s Theorem is considered with many layers of fasci-

nating consequences. Whilst its main impacts lie in the area of mathematical logic and

our understanding of incompleteness, Goodstein’s work has found applications in some

other unexpected areas as well. For example, Paris and Tavakol (1993) unexpectedly

consider the algorithm which generates a Goodstein Sequence as a dynamical system,

which – although unrelated to any known naturally occurring dynamical system – ex-

hibits very interesting characteristics, which could perhaps be related to the rate at

which the universe has expanded since its inception (Miller, 2001).
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Of course, in its more prominent environment though, many appreciate Goodstein’s work

and its subsequent developments (such as those made by Kirby and Paris, 1982) to be

hugely influential and groundbreaking in the field of mathematical logic. As alluded to

by Miller (2001), Goodstein’s Theorem was the first number theoretic statement proved

independent of Peano Arithmetic, so the proof given by Kirby and Paris (1982) cultivated

much excitement and further research into the incompleteness of Peano Arithmetic and

Goodstein’s Theorem. The work of Goodstein has been pivotal in our understanding of

results independent of Peano Arithmetic, and the progression of mathematical research

in this area has been influenced greatly by subsequent research performed on the work

presented by Goodstein (1944).

Rathjen (2015) remarks that although Goodstein made no mention of the implications

of his theorem with regards to the incompleteness of Peano Arithmetic, it is clear to

see that his intention was to present Goodstein’s Theorem as an independence result.

von Plato (2016) claims that Goodstein’s 1944 paper originally held the title “A Note

on Gentzen’s Theorem”, and allegedly made excessive references to Goodstein’s Theo-

rem as an independence result for Peano Arithmetic; but on review by Paul Bernays

(Gentzen’s doctoral supervisor), heavy criticism was made and Goodstein restructured

the paper immensely – removing all reference to the unprovability of Goodstein’s Theo-

rem and revising the title to “On the Restricted Ordinal Theorem” (Bernays, 1942 cited

by Rathjen, 2015). As a result, the remarkable implications of Goodstein’s Theorem as

an independence result for Peano Arithmetic were not uncovered until almost forty years

later, by the work of Kirby and Paris (1982). Rathjen (2015) notes that if Goodstein

had have persisted with his claims of the unprovability of Goodstein’s Theorem in Peano

Arithmetic, he would have been well on his way to proving an independence result for

Peano Arithmetic, thus accelerating our understanding of this area of mathematics by

what in reality was almost half-a-century.

Since the work of Kirby and Paris (1982) in proving the independence of Goodstein’s

Theorem from Peano Arithmetic, many subsequent developments have been made, in

the form of further study of both Goodstein’s Theorem and other independence results

for Peano Arithmetic. Cichon (1983) gave an alternative proof to Goodstein’s The-

orem’s unprovability a year later, much shorter than that given by Paris and Kirby,

which involved constructing Goodstein Sequences in such a way to be related to the

Hardy hierarchy (Hardy, 1904), invoking yet more interest in the area; and Kanamori

and McAloon (1987) presented yet another independence result for Peano Arithmetic,

relating to finite Ramsey Theory.

Goodstein’s Theorem and its implications are fascinating in a range of areas of mathe-
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matics, and – as such – are discussed in a wide variety of contexts. For the interested

reader, von Plato (2016) gives an interesting insight into the becoming of Goodstein’s

Theorem – starting with an account of the works of Gödel and Gentzen. For further

reading into the implications of Goodstein’s Theorem and the Incompleteness of Peano

Arithmetic, Kaplan (2012) gives a good account of the classification of non-standard

models of Peano Arithmetic using Goodstein’s Theorem, and Smith (2013) explores

incompleteness in great depth, making reference to Goodstein’s Theorem in chapter 23.

Acknowledgements

I would like to thank my supervisor, Dr. David Asperó, for proposing and facilitating
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Raatikainen, P. (2022). Gödel’s Incompleteness Theorems. https://plato.stanfo

rd.edu/archives/spr2022/entries/goedel-incompleteness. [Last accessed

23-February-2022].

Rathjen, M. (2015). Goodstein’s Theorem Revisited, pages 229–242. Springer Interna-

tional Publishing, Cham.

Rathjen, M. and Sieg, W. (2020). Proof Theory. https://plato.stanford.edu/arc

hives/fall2020/entries/proof-theory/. [Last accessed 30-April-2022].

Roitman, J. (1990). Introduction to Modern Set Theory. Pure and Applied Mathematics

(New York). John Wiley & Sons, Inc., New York. A Wiley-Interscience Publication.

Rubin, M. (2012). Ordinal arithmetic, Cantor normal form, Hessenberg sum, rank of

⟨On×On, <⟩. https://www.math.bgu.ac.il/~matti/Axiomatic-ST-2012-06--C
antor-Normal-Form--Hessenberg-Sum--Rank-of-alpha-times-beta.pdf. [Last

accessed 2-Mar-2022].

Simpson, S. G. (2009). Subsystems of Second Order Arithmetic. Perspectives in Logic.

42

https://mathshistory.st-andrews.ac.uk/Biographies/Fraenkel/
https://mathshistory.st-andrews.ac.uk/Biographies/Fraenkel/
https://plato.stanford.edu/archives/spr2022/entries/goedel-incompleteness
https://plato.stanford.edu/archives/spr2022/entries/goedel-incompleteness
https://plato.stanford.edu/archives/fall2020/entries/proof-theory/
https://plato.stanford.edu/archives/fall2020/entries/proof-theory/
https://www.math.bgu.ac.il/~matti/Axiomatic-ST-2012-06--Cantor-Normal-Form--Hessenberg-Sum--Rank-of-alpha-times-beta.pdf
https://www.math.bgu.ac.il/~matti/Axiomatic-ST-2012-06--Cantor-Normal-Form--Hessenberg-Sum--Rank-of-alpha-times-beta.pdf


Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeep-

sie, NY, second edition.
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